ANALELE ȘTIINȚIFICE ALE UNIVERSITĂȚII "AL. I. CUZA" IAȘI Geologie. Tomul LV, nr. 1, 2009

THE RAMAN STUDY ON CERTAIN SULFATES

NICOLAE BUZGAR¹, ANDREI BUZATU¹, IOAN VASILE SANISLAV²

¹ "Al.I.Cuza" University of Iași, Department of Geology, 20A Carol I Blv., 700505 Iași, Romania

² School of Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia

Abstract

Some of the most common sulfates have been investigated by non-contact Raman spectrography. For barite and anhydrite group the vibrational mode v_1 decresses as the atomic mass incresses. The Raman spectrum of chalcocyanite shows two strong bands at 1013 cm⁻¹ and 1045 cm⁻¹ interpreted as v_1 modes. The bands at 423 cm⁻¹, 448 cm⁻¹, 480 cm⁻¹ and 514 cm⁻¹ have been assigned to the v_2 sulfate mode, the bands at 1101 cm⁻¹ and 1205 cm⁻¹ to the v_3 vibrational modes and the bands at 622 cm⁻¹ and 670 cm⁻¹ to the v_4 mode of SO₄. The bands at 250 cm⁻¹, 269 cm⁻¹ and 347 cm⁻¹ have been interpreted as v_1 mode of SO₄. The v_2 and v_3 modes the bands are at 425 cm⁻¹ and 493 cm⁻¹ respectively 1089 cm⁻¹ and 1189 cm⁻¹. The bands at 623 cm⁻¹ and 654 cm⁻¹ were assigned to the v_4 mode. The translational mode T(H₂O, Mn) was determined at 263 cm⁻¹.

Key words: Raman spectra, sulfates, chalcocyanite, szmikite

¹ e-mail: nicolae.buzgar@uaic.ro